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Abstract. Dual-flow-loop two-filter radon detectors have a slow time response, which can affect the interpretation of their

output when making continuous observations of near-surface atmospheric radon concentrations. While concentrations are

routinely reported hourly, a calibrated model of detector performance shows that∼40% of the signal arrives more than an hour

after a radon pulse is delivered. After investigating several possible ways to correct for the detector’s slow time response, we

show that a Bayesian approach using a Markov Chain Monte Carlo sampler is an effective method. After deconvolution, the5

detector’s output is redistributed into the appropriate counting interval and a 10 minute temporal resolution can be achieved

under test conditions when the radon concentration is controlled. In the case of existing archived observations, collected under

less ideal conditions, the data can be retrospectively reprocessed at 30 minute resolution. In one case study, we demonstrate

that a deconvolved radon time series was consistent with: measurements from a fast-response carbon dioxide monitor; grab

samples from an aircraft; and a simple mixing height model. In another case study, a bias of 18% in the mean daily minimum10

radon concentration was eliminated by correcting for the instrument response during a period of stable nights and days with

well-developed convective boundary layers.

1 Introduction

Radon–222 (radon) is radioactive noble gas emitted primarily from the ice-free land surface, and widely used as a natural

passive tracer in the atmosphere. It is almost ideal as a passive tracer; as well as being chemically inert it has a relatively well-15

characterised terrestrial source, and a short 3.8 d half-life. Radon measurements have been used to identify baseline air-masses

at atmospheric monitoring stations (Brunke et al., 2004; Chambers et al., 2014, 2015a; Xia et al., 2013), for model validation

(Considine et al., 2005; Jacob and Prather, 1990; Zhang et al., 2008), and for making land surface flux estimates (Biraud et al.,

2000; Slemr et al., 2013; van der Laan et al., 2014). Radon has also been used as a tracer in recent studies of vertical mixing

(Chambers et al., 2011; Griffiths et al., 2013; Williams et al., 2011, 2013; Vargas et al., 2015) and in many earlier studies, some20

of which are reviewed by Zahorowski et al. (2004).

One of the challenges of using radon as a tracer is that emissions are small (∼ 1 atom cm−2s−1; Zhang et al., 2011) and

ambient concentrations are low. Low-level atmospheric measurements are therefore a niche served largely by instruments built

in-house (Frank et al., 2012; Levin et al., 2002, 2015; Wada et al., 2010, 2012; Whittlestone and Zahorowski, 1998; Grossi
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et al., 2012). The dual-flow-loop two-filter radon detector (Whittlestone and Zahorowski, 1998; Chambers et al., 2011) is the

focus of this paper. It is based on the two-filter method for radon measurements (Thomas and Leclare, 1970) and is called the

‘two-filter detector’ for short.

An advantage of the two-filter radon detector is that it provides a direct measure of radon concentration, rather than inferring

it from the ambient concentration of radon progeny. Progeny measurements, e.g. using the one-filter method, provide radon5

measurements which are more sensitive to environmental parameters (Xia et al., 2010) than two-filter detectors. This is because

the two-filter detector is unaffected by the degree of ambient disequilibrium between radon and its progeny (equilibrium, in

a radioactive decay chain, is when the activity concentration of a parent equals the activity concentration of its progeny).

Even though the two-filter detector measures the alpha activity of radon progeny internally, these progeny are generated under

controlled conditions inside a delay chamber, so that steady-state counts are proportional to the ambient radon concentration.10

The cost of being sensitive to radon concentration alone is that the detector is large, to accommodate the delay chamber, and

has the opportunity to see fewer counts than progeny detectors because of practical limits on the size of the delay chamber.

Radon detectors are important because of an increasing need for reliable measurements. Radon emissions, which must be

known for model validation studies, are increasingly well-characterised (e.g. Karstens et al., 2015) and radon applications are

becoming more ambitious (Chambers et al., 2015a; Vogel et al., 2013). In contrast, prior studies made simple assumptions15

about radon emissions (Conen and Robertson, 2002) and focussed on clear trends, such as identifying the contrast between

boundary-layer air and the radon-depleted free troposphere (Gäggeler et al., 1995; Guedalia et al., 1972).

Although sensitive and precise enough for the studies mentioned above, a major limitation of the two-filter detector is its

slow temporal response with a one-half rise time of about 45 minutes. The slow detector response is a problem faced by other

high-sensitivity techniques. It puts a limit on the detector’s usefulness during non-stationary conditions, most strikingly at20

inland sites when radon concentrations drop rapidly following the morning onset of vertical mixing. This makes it difficult to

compare radon measurements with flask samples, or with other measurements from fast-response instruments.

In order to tackle this problem, we have implemented a deconvolution method to correct observations for the instrument

response. Deconvolution is a problem which arises frequently in atmospheric measurements because of the finite spatial or

temporal response of sensors. For example, deconvolution methods have been applied to eddy correlation (Moore, 1986;25

Massman, 2000), cavity ring-down spectroscopy (Winderlich et al., 2010), temperature (McCarthy, 1973) and radiation mea-

surements (Ehrlich and Wendisch, 2015). As part of our implementation, the measurement uncertainty is also estimated, since

it is generally of interest and can be non-trivial. Another important consideration is the need to avoid the amplification of

measurement noise.

The purpose of this paper is to describe the deconvolution method and the effects of deconvolution on the interpretation of30

several case studies. In Sect. 2 a mathematical model of the detector is developed and used to explain the detector response to

a radon pulse. In Sect. 3 three deconvolution methods, of increasing complexity, are described. Three methods are discussed:

Richardson–Lucy deconvolution; Richardson–Lucy deconvolution with total variation regularisation; and a Bayesian Monte-

Carlo technique. The ultimate method, Bayesian Monte-Carlo deconvolution, uses the simpler Richardson–Lucy method in its

implementation. In Sect. 4 the deconvolution methods are tested under controlled conditions. In this test, an hour-long pulse35
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Figure 1. Process diagram of the dual-flow-loop two-filter radon detector. Wider arrows indicate higher flow rates. For the detector used in

these tests, the inlet filter was a high efficiency particulate filter (Vokes Air Hepatex JK), and the second filter was a twill weave stainless

steel mesh made from 20µm diameter wire with 20µm openings (635 mesh, TWP Inc.). The alpha particle counter consisted of an assembly

holding the filter, silver activated zinc sulfide scintillation paper, and photomultiplier (9330B, ET Enterprises).

of radon is delivered to the detector. Then, in Sect. 5, the deconvolution method is applied to data acquired in a previous field

campaign. As well as radon observations, the interpretation draws on a range of micrometeorological data from surface and

aircraft sensors. In Sect. 6 the need for deconvolution is discussed, along with suggestions for detector operation which improve

the chances of successfully correcting the detector output. Finally, conclusions are drawn in Sect. 7.

2 Radon detector model5

This section describes a simple model of the dual-flow-loop two-filter radon detector (Fig. 1). The model is based on the one

described by Whittlestone and Zahorowski (1998), but with additions which were needed for an unbiased fit to observations,

necessary for deconvolution. The model is described in full alongside a description of the detector itself. At the end of the

section, model output is compared with experiments.

2.1 Operating principles10

The two-filter detector operates by drawing ambient air though a particulate filter, to remove ambient radon progeny, and then

counting radon progeny on a second filter which is downstream of a delay chamber. The only source of progeny, on the second

filter, is the radioactive decay of radon in the delay chamber. The count rate, as a result, is proportional to the ambient radon

concentration.

The delay chamber volume is proportional to the desired sensitivity. Detectors have been built with delay chambers of15

nominal volumes 100, 700, 1500, and 5000 L, the smallest intended for inland use (Martin et al., 2004) and the largest for

remote stations which monitor non-terrestrial air (Zahorowski et al., 2013, e.g.). By optimising other aspects of the design

(Whittlestone et al., 1994), the measured net efficiency has proven to scale roughly linearly with volume, εnet ≈ 0.2V where
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Figure 2. The decay series of radon and its immediate progeny, an extract from the uranium–238 series. The figure shows the energy of alpha

decays, and nomenclature used to identify species abundances: NRn, NA, NB , and NC .

εnet is the number of counts per second at an ambient concentration of 1 Bq m−3, V is the internal volume in m3. We focus on

the 700 L detector in this paper but also show an example from a 1500 L detector.

Because the detector works by gross alpha counting, it can not operate reliably in the presence of thoron (radon–220, with

a half-life of 56 s). Like radon, thoron is a gas that is emitted from the ground. Its decay products include an alpha-emitting

daughter (lead–212, with a half-life of 10.6 h) which causes an elevated background if allowed to reach the second filter5

(Williams and Chambers, 2015). For installations where thoron contamination is possible, the thoron signal is attenuated by

passing sample air through an external delay chamber before entering the detector, aiming for a delay of at least five minutes.

Calibration is typically performed monthly by injecting radon from a calibrated source (typically with a 5% absolute uncer-

tainty), and the background count rate measured quarterly. For more about a typical installation, see Chambers et al. (2011).

2.2 Model formulation10

Whittlestone and Zahorowski (1998) present a model which describes the detector well enough to estimate its most important

operational characteristics, such as the net efficiency and response time. Extra terms need to be introduced in order to reproduce

day-to-day variations in the detector response. Day-to-day variations are small, but important for estimating the deconvolution

uncertainty, so these extra terms are important in the present application. In this section, the model is described in full.

Following the notation of Whittlestone and Zahorowski (1998), radioelement concentrations in air are given in number15

densities (atoms m−3), using the symbols shown in Fig. 2: NRn for radon–222, NA for polonium–218, NB for lead–214, and

NC for bismuth–214. Bismuth–214 decays are treated as immediate alpha decays to stable lead–210, because of the short
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half-life of the intermediate species, polonium–214. The radioactive decay constant, λ= log(2)/τ where τ is the half life, is

written with the same subscript as the element’s number density.

As shown in Fig. 1, ambient air is drawn first into an external delay chamber, at the external flow rate of qe, to remove thoron.

Ambient air has a radon concentration NRne and the external delay chamber has a radon concentration NRnd
and volume Vd.

In the model, the air in the delay volume is always completely mixed. In the delay chamber, the balance between radon inflow,5

outflow, and decay is

dNRnd

dt
=
qe
Vd

(NRne −NRnd)−NRndλRn. (1)

Air exiting the external delay chamber passes through the first filter; which removes radon progeny, thoron progeny, and

aerosols; then enters the main flow loop. At this point, in the model, the temperature changes from the external air temperature,

Te, to the internal detector temperature, Ti. If the detector is outdoors, Ti can be some tens of degrees above the external tem-10

perature because of solar heating on the stainless steel tank. The radon concentration, NRn, is assumed be uniform throughout

the internal delay chamber because of the rapid circulation of air (q� qe, q/V ≈ 1 min). In the internal delay chamber,

dNRn

dt
=
qe
V

(NRnd
+NRncal −NRn)−NRnλRn−NRn

1
T

dT

dt
. (2)

Equation (2) differs from the Whittlestone and Zahorowski (1998) model in two ways. First, the last term in Eq. (2) takes

into account the difference between flow rates in and out of the internal delay chamber, as a result of a temperature-induced15

trend in air density. It causes, at most, a ∼2% change in detector output when the detector temperature is changing rapidly.

For detectors installed indoors, it could be neglected. Second, Eq. (2) has been modified to simulate detector calibration.

During normal use, the valve between the delay chamber and the calibration source (Fig. 1) is closed and NRncal = 0. During

calibration,NRncal =As/qe whereAs is the calibration source activity. The calibration source is chosen so thatNRncal �NRn.

Returning to the description of usual operation: plug flow is assumed to exist within the internal delay chamber; the internal20

flow rate is chosen so that the mean transit time, τt = V/q, through the delay chamber is about 1 minute; and inside the internal

delay chamber, radon atoms decay according to the series shown in Fig. 2. Unattached radon daughters deposit on chamber

walls, or plate out, with a deposition velocity, vd, of about 0.15–0.5 mm s−1, depending on the circulation pattern (McLaughlin

and O’Byrne, 1984; Nazaroff et al., 1992). Deposition is parametrised here as an exponential loss process, with a single time

constant of λp for all species. The time constant λp can be linked to the more usual parameterisation of deposition, based on25

the deposition velocity vd, by equating the expressions for the volume-integrated deposition, V λpNA, with the area-integrated

depositionAvdNA, whereA is the internal surface-area of the delay chamber. Hence, λp =Avd/V . Balancing these production

and loss processes, the concentration of the first three progeny in the delay chamber is given by

dNA
dt

=NRnλRn−NA (λA +λp) (3)

dNB
dt

=NAλA−NB (λB +λp) (4)30

dNC
dt

=NBλB −NC (λC +λp) . (5)
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In air arriving at the second filter, the concentration of radon progeny is given by the solution to Eqs. (3–5) at a time equal to

the transit time, t= τt. The solution can be written analytically, but is lengthy and not reproduced here.

Due to the presence of the first filter, and the short transit time, polonium–218 (species A) is the dominant species trapped

on the second filter, which is actually a fine wire screen. Because aerosols are excluded from the tank, radon progeny exist as

unattached clusters which are efficiently trapped on the screen due to their large diffusivity. The efficiency of the screen, εs,5

will be discussed further in Sect. 2.3.

The number of progeny, FA, FB , and FC , resident on the screen is determined by a balance between the arrival of new

progeny, trapped at a rate qεsN , in situ production from the decay of parent isotopes, and loss processes, dominated by

radioactive decay. An additional loss process, not included by Whittlestone and Zahorowski (1998), is recoil loss (Jonassen

and McLaughlin, 1976). During alpha decay, the nucleus of the newly formed progeny recoils away from the alpha particle to10

conserve momentum. Although momentum is conserved for beta and gamma emission too, only in the case of alpha decay is

enough kinetic energy transferred to the nucleus for it to be lost from the screen. In the detector, recoil is significant only for

the decay of polonium–218 (species A), whose probability of being lost from the screen is written pr. These considerations

lead to

dFA
dt

= qεsNA−FAλA (6)15

dFB
dt

= qεsNB + (1− pr)FAλA−FBλB (7)

dFC
dt

= qεsNC +FBλB −FCλC . (8)

A silver activated zinc sulphide scintillator and photomultiplier tube assembly count alpha particles with an efficiency εd,

which is assumed to take a single value for both alpha particles. In the simplified decay chain, this gives a detector activity

(alpha particles counted per second) of20

Ad = εd (FAλA +FCλC) , (9)

which is integrated over a counting interval, δt. Typically, δt= 30 min for comparison with observations. Although there are

theoretical estimates for the counts expected from each side of a screen with simple geometry (Solomon and Ren, 1992), εd is

effectively a free parameter in this model because the geometry of the screen and photomultiplier assembly is complicated, the

design having been improved over several iterations (Whittlestone and Zahorowski, 1998; Williams and Chambers, 2015).25

An important characteristic of the detector, the net steady-state efficiency, εnet, is found by setting time derivatives to zero,

combining Eqs. (6)–(9), and computing the count rate for an inflow radon concentration of 1 Bq m−3. Although εnet depends

on several model parameters, it is controlled in practice by the delay volume, V , provided that the flow rate q is adjusted so

that the screen efficiency is high and the plateout loss is small (Sect. 2.1).

We implemented this model using the Boost odeint ordinary differential equation solver (Ahnert and Mulansky, 2011).30

Ambient radon concentrations were represented as a piecewise linear or piecewise constant time series, depending on the case

being simulated.
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2.3 Environmental influences on model parameters

Some of the model parameters are potentially affected by changes to the environment within the delay chamber. In the delay

chamber, radon atoms decay by alpha emission into polonium–218. Initially, 88% of the polonium atoms carry a positive charge

(Porstendörfer, 2001) but lose their charge so that the steady-state fraction of charged clusters is roughly 50% (Dankelmann

et al., 2001). Both charged and neutral polonium atoms form unattached clusters with an aerodynamic size of about 1 nm5

(Zhang et al., 2014), but charged atoms form larger clusters with a lower diffusivity. Because the neutralisation rate depends on

relative humidity, at least in the presence of reactive trace gases (Frey et al., 1981), so the net diffusivity of polonium–218, and

other radon daughters, can change with relative humidity. This is a potential cause of changes in both the screen efficiency, εs,

and the plateout time constant, λp, both of which increase with diffusivity. The effect of humidity is important only in the range

between about 0–30% (Su et al., 1988), asymptotically approaching a constant value at higher relative humidities. This range10

of sensitivity to humidity compares well with the results of Thomas and Leclare (1970) who saw an effect on their two-filter

apparatus in the range 0–20%.

Based on particle diffusivity, the efficiency of woven steel screens can be computed from theory (Cheng et al., 1980; Cheng

and Yeh, 1980). The Cheng et al. theory has been validated experimentally for particles above about 2 nm (Scheibel and

Porstendörfer, 1984; Ichitsubo et al., 1996; Alonso et al., 1997; Heim et al., 2005; Shin et al., 2008; Thomas et al., 2013) and,15

although it begins to under predict the screen collection efficiency for smaller particles (Heim et al., 2010), is appropriate for

radon progeny. For the flow rate typical in the 700 L detector, q =12.2 Ls−1, a filter area of 262 cm2, and taking the diffusivity

of neutral clusters to be 0.08 cm2 s−1 and positive clusters to be 0.03 cm2 s−1 (Frey et al., 1981), εs = 0.98 for neutral clusters

and 0.87 for positive clusters. Bearing in mind an upper limit of 88% positive clusters, the net value of εs should lie in the

range 0.89–0.98, assuming uniform flow across the screen.20

In isolation, a change in the screen efficiency, though it affects counting efficiency, will not lead to a change in the shape of

the detector response. To match the observed changes in detector response, there needs to be a process which allows atoms to

be lost from the screen at a varying rate. A parameter which allows this is a changing recoil fraction. The upper limit of this

effect is for a flat surface in a vacuum, where there is a 50% chance of the recoil velocity being directed away from the surface

and an atom being lost (Jonassen and McLaughlin, 1976). For a screen in an airflow, the recoil losses measured by Knutson25

and George (1994) were consistent with there being a 50% chance of recoil loss followed by re-attachment to the screen at the

same rate as the screen efficiency. Although based on only four samples, the Knutson and George (1994) results suggest that

the recoil probability can be written

pr =
1
2

(1− εs) . (10)

Following this chain of reasoning, we can expect that the radon detector’s response to have a more weight at long lag times30

when pr is small, which will be more likely on days when the delay chamber humidity is above ∼20%. Based on the expected

range for εs and Eq. (10), pr, should lie in the range 0–0.055.
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2.4 Model validation

The model of the detector was validated experimentally by measuring the detector’s response to a short pulse of radon. The

modelled detector response consists of two overlapping peaks (Fig. 3A); counts occurring during the first hour are dominated

by the decay of polonium–218, later counts are mainly from the decay of polonium–214. The relative timing of the two peaks

is mainly controlled by the radioactive lifetime of the intermediate isotopes. In contrast, shape of the first peak is strongly5

controlled by the inlet flow rate, qe, where a higher flow rate leads to a sharper peak.

So as to reproduce the large temperature variations seen in the field, for the validation experiments the detector was installed

outdoors with full exposure to the midday sun. Ambient air was sampled continuously at about 2 m AGL and, for 1 minute,

radon was injected into the intake line upstream of the thoron delay chamber. According to specifications (Pylon Inc.) the

source emits radon at 30.8 Bq min−1±5% when flushed continuously. By leaving the source sealed in between pulses (one10

per day at 1300 LT; valves were controlled by a timer), radon accumulated inside the source, leading to a pulse which was

much larger than the ambient radon concentration, although not precisely known. Counts were recorded every minute and the

count rate peaked at ∼ 1500s−1, compared with ambient counts of ∼ 1s−1. For this 700 L detector, the count rate peaks at

18 min after injection and 50% of the counts occur before 49 minutes, 42% of the counts are recorded after the first hour. The

full-width at half-maximum is 47 minutes and the peak is asymmetric; the count rate is 50% of its maximum 11 minutes before15

the peak and 36 minutes after the peak.

The theoretical model, when fit to the observed data, has residuals which show little systematic structure (two cases are shown

in Fig. 3). The size of the model error is better than the typical counting error under ambient conditions, which indicates that the

model is good enough to use for deconvolution. The residuals of Case A show what might be systematic structure around the

peak, perhaps because of air flow variations, but the magnitude is small and model error is neglected in the following sections.20

Day to day variations in the detector response can be matched by changing model parameters. The two cases in Fig. 3,

marked A and B, were chosen because they lie at two extremes of the observed ratio of polonium–214 to polonium–218

counts. To achieve a good fit on both of these days, the recoil parameter had to be allowed to vary.

Considering all nine of the pulse tests, the ratio of polonium–214 to polonium–218 counts tends to be higher on days when

the relative humidity inside the detector low (Fig. 4), which is consistent with a value of pr at a humidity below 20%.25

To fit these observations, the recoil parameter, pr, must be varied from 0–0.1. This range is not wildly unrealistic, yet is

larger than the range expected from theory (0–0.055, Sect. 2.3). The reason for this is perhaps that pr is acting as a proxy for an

unknown process, or because of the known approximations in the model. Some of the approximations are that εd and λp take

a single value for all radon daughters, or the convenient assumptions of plug flow in the internal delay chamber and complete

mixing in the external delay chamber. Dealing with this by adding complexity to the model is undesirable because there are30

already more parameters than can be constrained by observations. We therefore choose to allow pr to extend outside the range

predicted by theory so as to achieve a good match with observations.

A further consequence of the simplicity of the model, and the nature of the test data, is that it can not be used to infer the

reason for changes in pr. Even though our data is consistent with a relative humidity effect, something which is also supported

8
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Figure 3. Modelled and observed detector response to a radon source injected for one minute at time zero. Panel A shows the simulated

response of the 700 L radon detector during normal operation (base case) including a break down between contributions from polonium–218

and polonium–214 counts. Also shown is the effect of changing the external flow rate, qe. Panel B shows the observed and modelled detector

response, comparing two days which have differing detector responses, interpreted as a change in the fraction of polonium–218 progeny lost

from the screen after alpha decay. Panels C and D show the residuals (observed minus modelled counts) after fitting the modelled response to

observations. The pulse concentration is not precisely known, and not necessarily the same each day, so the detector response is normalised

(by total counts in A and by peak counts in B). The normalisation factor is approximately 1/
(
1500counts−1

)
.
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Figure 4. Ratio of polonium–218 to –214 counts (related to the recoil probability, pr) during pulse injection tests as a function of the average

relative humidity within the detector for the first hour since pulse injection. The Bayesian deconvolution approach (Sect. 3.3) was used to fit

the model to observations by specifying a known ambient radon concentration. The markers show mean ± one standard deviation.

by previous studies (Frey et al., 1981; Su et al., 1988; Thomas and Leclare, 1970), these data can not rule out a temperature

effect, because relative humidity is driven by temperature in these data. These issues are sidestepped, during deconvolution, by

allowing pr to take a random value within a range that encompasses the full range of observed detector responses. It is possible

to take this approach because the variations in detector response are relatively small.

Variations in pr imply that the net efficiency of the detector must also be changing. To measure variations in net efficiency,5

two changes were made. Instead of being closed between pulse injections, the source was flushed continuously so that a known

concentration of radon could be injected each day. Instead of a 1 minute injection, radon was injected for 1 hour each day, for

32 consecutive days. The model was fit to observations, to derive the net efficiency. The individual model parameters were not

as well constrained as during the pulse-injection tests, so we discuss only the net efficiency derived from the 1 hour injections.

In contrast to the apparent variation in pr, the net efficiency of the detector was more stable. This might be because the10

plateout rate, λp, is also linked to diffusivity and will affect the net efficiency in the opposite sense to pr. The net efficiency

had a coefficient of variation, ratio of standard deviation to mean, of 0.018. On days where the relative humidity was below

15%, however, the coefficient of variation (0.021) was about double the remaining days (0.012). This degree of variability is

comparable with the 0.02–0.06 variability range of monthly calibrations across several sites (Chambers et al., 2015a).

Solar heating, as a cause of variations in sensitivity, was previously examined by Brunke et al. (2002). They found that the15

calibration coefficient of a 1500 L detector was more variable if the detector was unshaded, and attributed this to the effect

of buoyancy-driven secondary circulations which increase the deposition rate of radon daughters within the delay chamber.

However, they reported a coefficient of variation of 0.14 for the unshaded tests, almost seven times larger than our tests. The

700 L detector used here is also susceptible to secondary circulations, so it is likely that another factor was also important in

the earlier results.20
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A possible explanation is the better temperature measurement in the newer detector. In the present version, air temperature

inside the delay chamber is measured using a dedicated sensor (Vaisala HMP45C), allowing the internal volumetric activity

(Bq m−3) to be converted to ambient activity, or to equivalent activity at standard temperature and pressure (20◦C, 1000 hPa,

written Bq m−3 STP). The Brunke et al. (2002) detector lacked an internal temperature sensor, relying instead on the tempera-

ture reported by a data logger, which was inside the detector but separate from the delay chamber, for air density calculations.5

Because the internal air density can differ from ambient conditions by ∼ 10%, the air density correction can be an important

consideration. An imperfect density correction might have been a contributor to the large variation in calibration coefficient,

which was seen by Brunke et al. (2002) but not reproduced here.

3 Deconvolution methods

The task of deconvolution is to estimate a true signal from observations which are contaminated by noise and smeared by10

the non-ideal response of a detector. For a deconvolution technique to be applicable to radon measurements, it must handle

Poisson–distributed noise, reconstruct a non-negative signal, and preserve the signal’s long-term average. Ideally, it would also

provide an uncertainty estimate and avoid the amplification of noise.

Deconvolution can be expressed in terms of Bayesian parameter estimation (Gelman et al., 2013; MacKay, 2003). A key

requirement is that, given a set of unobservable parameters, θ, a model is available to compute the likelihood of an observation15

vector, y. The vector θ contains parameters we want to know, i.e. the radon time series, as well as other parameters needed

by the model to compute the detector response. The likelihood of observations y, given parameter values θ, is written p(y|θ).

The quantity we require, the probability of θ given actual observations y, written p(θ|y), is given by Bayes’ rule

p(θ|y) =
p(θ)p(y|θ)

p(y)
(11)

meaning that, for a fixed set of observations y,20

p(θ|y)∝ p(θ)p(y|θ) . (12)

Therefore the task of computing the relative likelihood of θ, where each θ is a sample from the posterior probability distri-

bution, amounts to developing a model of the likelihood function, p(y|θ), as well as assigning prior probabilities, p(θ), to the

parameters.

For the radon detector, observed counts follow a Poisson distribution with a probability distribution given by25

Poisson(n|λ) =
1
n!
λn exp(−λ) (13)

where n is the number of counts, an integer, and λ is the expected value of the distribution. The expected value at time t is

given by the model,M(t|θ), which was described in Sect. (2.2).

The net likelihood, p(y|θ), is found from the product of the likelihood of the N individual observations, namely

p(y|θ) =
N∏

i=1

Poisson(yi|M(ti|θ)) (14)30
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where yi is the number of counts observed in the ith counting interval. We now consider three methods for making estimates

of θ, and briefly describe the implementation.

3.1 Richardson-Lucy deconvolution

Richardson–Lucy (RL) deconvolution (Richardson, 1972; Lucy, 1974) is an iterative algorithm for image reconstruction, fa-

mously used for restoring images from the Hubble Space Telescope (Adorf et al., 1995). The RL method is a special case of5

the expectation–maximisation (EM) method (Dempster et al., 1977), derived for Poisson counting statistics. It follows from

Eq. (12) under the assumption of a uniform distribution for the prior distribution of the model parameters. In the solution, it is

assumed, any non-negative value is equally likely.

A restriction of RL deconvolution, is that the detector response must be known and unchanging. Therefore,M(t|θ) can be

written as a convolution of a known point-response function, s, with the ambient radon concentration θ. The detector output is10

y = θ ∗ s (15)

where ∗ is the convolution operator and y, θ, and s are discretised over the counting interval δt .

The maximum likelihood estimate, which maximises p(y|θ), is found by iterating with the steps

θk+1 = θk
(

y

θk ∗ s

)
∗ ŝ (16)15

where ŝ(t) = s(−t) is the flipped point response function, θk is the estimate at the kth iteration, and the initial guess is θ0 = y.

3.2 Total variation regularisation for Richardson-Lucy deconvolution

Without further refinement, RL deconvolution amplifies noise and leads to oscillatory solutions. Regularisation introduces an

extra term into the optimisation which penalises oscillations and makes smooth solutions more likely (Dey et al., 2006; Dupé

et al., 2012; Kempen and Vliet, 2000; Laasmaa et al., 2011).20

One method is called Total Variation regularisation. Richardson–Lucy deconvolution with Total Variation regularisation

(RL–TV) smooths the solution without reducing the sharpness of step changes (Rudin et al., 1992). With the introduction of

an adjustable regularisation parameter, λTV, the iteration step (16) becomes (Dey et al., 2006)

θk+1 =
(

y

θk ∗ s

)
∗ ŝ θk

1−λTV

∣∣∣dθk

dt

∣∣∣
. (17)

Increasing the size of λTV increases the amount of smoothing in the solution. A thorough examination of the effect of λTV25

is discussed by Kempen and Vliet (2000); we chose the value in an ad-hoc manner, using the smallest value which prevents

oscillations during daytime periods when radon concentrations are steady.

Regularised Richardson–Lucy deconvolution has three important limitations which mean that it is not ideal for deconvolv-

ing the radon detector output. First, the point-response function must be known, whereas the radon detector response, being
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sensitive to environmental changes, is uncertain. Second, no uncertainty information is provided. Third, the regularisation pa-

rameter, which affects the final result, is chosen subjectively in our implementation. These limitations can be overcome using

a Markov chain Monte-Carlo (MCMC) method which works directly with probability distributions.

3.3 Bayesian Monte-Carlo deconvolution

This method, here termed Bayesian Monte-Carlo (BMC) deconvolution, is based on the general technique of Bayesian param-5

eter estimation. A Markov chain is constructed, containing a large number of samples from the posterior probability function.

Each sample is a possible realisation of the true time series, and other model parameters. Provided that the chain has been run

for long enough to converge to the posterior distribution, an estimate of the time series statistics can be obtained directly from

the Markov chain. Compared with the maximum–likelihood methods in the previous sections, generating the Markov chain

is computationally expensive and can require tuning and supervision to ensure that convergence has been reached. Several10

features of our implementation were guided by the image reconstruction method of Esch et al. (2004).

In this method, the detector is modelled directly using the equations in Sect. 2.2. Prior beliefs are assigned to the detector

parameters and the external radon concentration is represented as either a piecewise linear, or piecewise constant, function of

time, depending on which is more appropriate to the problem at hand.

The radon concentration is strictly positive and a prior constraint is chosen which ensures that gradual changes in radon15

concentration are more likely than rapid changes. This constraint, based on the assumption that concentration changes arise

from mixing processes and follow a lognormal distribution, is written

logCi ∼Normal(µ= logCi−1,σ = σδ) (18)

where Ci is the radon concentration at the ith step and σδ is the width of the distribution. The distribution width has a physical

meaning, it is equal to the standard deviation of logCi− logCi−1, and can be estimated from the variability of another tracer20

whose variability is likely to be similar to radon.

The detector parameters are drawn from normal distributions, which are wide enough to reproduce the observed changes in

detector response. For the 700 L detector, these are

qe ∼Normal
(
µ= 40Lmin−1,σ = 0.02µ

)
(19)

q ∼Normal
(
µ= 800Lmin−1,σ = 0.02µ

)
(20)25

εs ∼Normal(µ= 0.95,σ = 0.05) (21)

logλp ∼Normal(µ= log(1/180),σ = log2) (22)

As well as the individual detector parameters, the net detector efficiency εnet was constrained,

εnet ∼Normal(µ= 0.128,σ = 0.05µ) , (23)
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which is larger than the observed variability in εnet (0.02, Sect. 2.4) but matches the uncertainty in εnet based on the calibration

source. The constraint on εnet means that samples with high values of εs, the screen capture efficiency, are more likely to have

high values of the plateout constant λp, so that εnet stays within a reasonable range.

Samples are generated from the posterior distribution using the emcee sampler (Foreman-Mackey et al., 2013), an imple-

mentation of the affine invariant ensemble sampler of Goodman and Weare (2010). Other samplers considered were the NUTS5

sampler, implemented in Stan (Hoffman and Gelman, 2014), and PyMC (Patil et al., 2010). Our main reasons for choosing

emcee were that it more easily accommodated our detector model than Stan, and implements a more sophisticated sampler

than the current version of PyMC.

The emcee sampler works well when initialised around the maximum in probability space (Foreman-Mackey et al., 2013).

In our implementation we use a two-stage approach to find this location. A first estimate is obtained using the regularised10

Richardson–Lucy method. This first estimate is then refined by using Powell’s method (Powell, 1964; Press et al., 2007) to

maximise Eq. (12). The estimate obtained is termed the maximum a posteriori probability (MAP) estimate. It differs from the

maximum likelihood (ML) estimate by taking into account prior constraints on model parameters.

Because of the computational expense, and because the probability distribution is difficult to sample from, three numerical

tricks are used to improve the sampler performance. First, the radon time series is broken into overlapping chunks. Shorter15

chunks, meaning fewer parameters, are easier to sample but each chunk must be longer than the response time of the detector.

For the examples here, 24 h chunks with 6 h of overlap worked well.

A second useful trick was to transform the radon time series into a form inspired by the wavelet-like basis used by Esch et al.

(2004), which reduces the correlation between parameters and makes the probability density easier to sample and optimise.

The transformed parameters, φi, were derived from the radon time series, Ci, according to20

φ1 =
N∑

i=1

Ci (24)

φi =
Ci

φ1−
∑i−1
j=2Cj

. (25)

This transformation was more effective than the more common wavelet or Fourier transforms and had the most noticeable

effect at the MAP optimisation step. The first parameter, φ1, can be thought of as the time integral of the signal and is strongly

constrained by observations. The remaining φ2 . . .φN can each be interpreted as a fraction of the remaining integrated-signal25

which the current point contributes.

The final trick, another transformation, was applied to bounded parameters. Parameters which were strictly positive, θ, were

transformed to unbounded parameters, φ, according to

φ= logθ (26)

and parameters with upper, b, and lower, a, bounds were transformed using the logistic function30

φ= logit
(
θ− a
b− a

)
(27)
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Figure 5. Observed counts and deconvolved output. An elevated concentration of radon was injected into the detector inlet between 1300

and 1400 with counts recorded at 10 min intervals. Observations were corrected for the detector response using the Bayesian Monte Carlo

(BMC), Richardson–Lucy (RL), and Richardson–Lucy with total variation regularisation (RL–TV) deconvolution methods.

where

logit(x) = log(x)− log(1−x) . (28)

4 Laboratory demonstration

An initial test of the deconvolution methods was performed under controlled conditions, so that the deconvolution result could

be compared with a known true signal. The known signal was generated by injecting a pulse of radon into the inlet for one hour5

at 770 Bq m−3,∼ 103 times ambient concentration, to generate a solitary square wave. Detector counts were recorded at 10 min

intervals, and the deconvolution methods used to reconstruct the input signal at 10 min resolution. Compared with atmospheric

radon observations, such a change is unrealistically abrupt and poses a challenge to all of the deconvolution methods. On the

other hand, the signal-to-noise ratio during the injection period is much larger than typical atmospheric observations, and this

makes deconvolution more precise.10

A comparison between the three methods (Fig. 5) shows that all three are able to correctly redistribute the output signal into

the one hour period when radon was being injected and to locate the edges of the square wave. There are also clear differences

between the deconvolution methods. Without regularisation, Richardson–Lucy (RL) deconvolution produces oscillations in the

solution, most visible in the detector background before and after the radon injection. Oscillations are completely suppressed

during the peak with total variation regularisation (RL–TV), which favours step changes in the deconvolved signals, and15

background fluctuations are dramatically reduced.

Bayesian Monte Carlo (BMC) deconvolution produces a similar result to RL–TV, but the error estimate makes it clear that the

reconstructed concentration fluctuations are not necessarily present during the injection period. The period from 1400–1600 is
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problematic, though. During this period, detector counts are slowly decaying from their peak count rate and the deconvolution

output relies heavily on the accuracy of the model. The error bounds on the BMC deconvolution widen during this period, but

not enough to include the scenario of an abrupt drop back to a constant radon background, which is presumed to be the true

signal. This reflects the prior constraint which favours smooth time series (Eq. 18), which is also the reason for the slower

response of the BMC solution at 1400 when compared with both RL and RL–TV.5

The radon time series reconstruction is nevertheless a vast improvement over the scaled detector output. In this test, 10 min

output is both feasible and realistic. The fact that prior beliefs are incorporated into the error limits needs to be kept in mind,

however. Both the mean reconstruction and the error limits are influenced by the prior constraint which says that ambient radon

concentrations are unlikely to change by a factor of 103 over a 10 min period.

An obvious test of this proposition is to relax, or drop entirely, the prior constraint on smoothness. It turns out, however, that10

it becomes difficult for the emcee sampler to draw samples from the posterior distribution in the absence of the smoothness

constraint. It is not unexpected that this is a difficult distribution to sample. Distributions with a large number of parameters

and non-linear models are problematic (Jasche and Wandelt, 2012), and the affine invariant sampler can fail on multi-modal

distributions (Foreman-Mackey et al., 2013). It is possible that the smoothness constraint on the radon time series also smooths

multi-modal peaks in the probability distribution.15

The NUTS sampler, used by Stan, works well without the smoothness constraint. When applied to synthetic data, with a

precisely known point-response function, uncertainty limits were indeed wider after the abrupt step back to ambient conditions

(a plot is not shown). When applied to real data, however, small differences between the assumed and actual detector response

caused ringing, or oscillations, in the output. Stan uses its own problem description language, making it difficult to incorporate

the detector model necessary for a changing point response function, therefore the emcee sampler combined with a smoothness20

constraint is currently the best approach.

Although the smoothness constraint leads to subtle problems in this extreme case, it should improve the results for natural

variations in radon concentration by preventing the amplification of noise.

5 Field application

In this section, a case study approach is used to demonstrate the effect of deconvolution on radon time series, and their inter-25

pretation. Radon observations can be used as both qualitative and quantitative tracers of vertical mixing either directly, or by

comparison with another tracer emitted by the land surface. For the examples shown here, the deconvolved time series changes

the interpretation when compared with the raw signal.

Prior to the characterisation experiments, the 700 L radon detector had been deployed in a two week field campaign along-

side other sensors. The detector was outdoors, unshaded, and counts were recorded every 30 min. In this section, we apply the30

Bayesian deconvolution method to these previously acquired measurements to see how the detector response affects interpre-

tation of 30 min resolution data.
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Figure 6. Field observations from a calm and clear night on the 5th–6th of November 2011. The wind speed was .1 m s−1 at 2 m AGL for

most of the night. Aircraft measurements were made 36–41 m agl over 6 km flight segments. Shading indicates night time.

The study area was in an agricultural grazing region dominated by grassland and with gently sloping hills. The study

area and ancillary measurements are described in detail by Williams et al. (2011). The radon detector was ∼500 m from a

10 m eddy-covariance and meteorological mast. Airborne radon measurements were taken from an ECO-Dimona motor glider

equipped with activated charcoal filters. The filters were exposed during flight and analysed for radon content within 24 h

(Williams et al., 2011). A closed path infra-red gas analyser (Li-7000, LI-COR inc.) measured CO2, with a 1 min averaging5

time, from a sampling tube co-located with the radon detector inlet. Soil radon emissions in the Goulburn area are comparable

to the Australian average (23.4±2 mBq m−2 s−1), having previously been measured as 18.1 mBq m−2 s−1, during relatively

wet conditions during winter, and 51.3 mBq m−2 s−1 in a dryer summer period (Griffiths et al., 2010).

Data from one night are presented in Fig. 6. Around sunset, both carbon dioxide and radon concentrations increase as the

result of surface emissions being trapped within the stable nocturnal boundary layer. To assess the success of deconvolution,10

we compare radon with carbon dioxide fluctuations and assume that soil emissions are the only significant source of carbon

dioxide. Following from this assumption, radon and carbon dioxide variations should both be driven mainly by atmospheric

mixing and therefore be strongly correlated. Like radon, which is produced at a constant rate, the soil production of carbon

dioxide should be relatively steady in this dry grassland (Kuzyakov and Gavrichkova, 2010). The presence of a reference time

series is important because of the need to discriminate between real signal, which has been reconstructed, and spurious features15

in the time series caused by the amplification of noise.

Based on the reference carbon dioxide time series, deconvolution improves the radon observations in three ways. First,

the time lag between carbon dioxide and radon is eliminated. Second, the night-time variability is increased which greatly

improves the match with transient changes in tracer concentration during the night. Third, the apparent duration of the morning

transition, from a stable to unstable boundary layer, is reduced in the reconstructed radon time series and now matches the time20

taken for carbon dioxide to return to daytime values.
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Although the lag can also be greatly reduced by the much simpler means of removing a constant lag from the radon ob-

servations, previously common practice, this will not change the time taken for radon concentrations drop during the morning

transition. In the example shown, the detector counts take 4.5 h to drop to daytime values from their peak compared with 3 h

for both carbon dioxide and the deconvolved radon time series. On days when the transition was more rapid (not shown), it

was still ∼4.5 h before the detector output stabilised at day-time values.5

As further evidence that the deconvolved observations are a better representation of the true radon concentration, there is

a better agreement in the timing of the drop in radon concentration between the surface radon measurements and aircraft

samples made 30 m overhead. The aircraft measurements are not directly comparable with the surface-based detector; the first

two aircraft samples were made above the stable boundary-layer and all aircraft samples were made over 6 km flight segments.

In contrast to the earlier samples, the later two were made within the comparably well mixed convective boundary layer and10

have a much smaller offset from the deconvolved time series. The remaining difference between the aircraft and fixed detector

measurements is outside the limits of instrument uncertainty, but plausibly the result of spatial variability in the developing

convective boundary layer.

When plotted against each other, carbon dioxide and radon are strongly related over almost two weeks of measurements.

Focussing on a single night, Fig. 7a shows that they are linearly correlated and that deconvolution strengthens the correlation15

more than the removal of a constant 60 min lag, which is the optimum lag for maximising the correlation between radon and

carbon dioxide (Fig. 7b). Deconvolution also corrects the slope of a linear fit to the points, changing it by 6% when compared

with the constant-lag correction.

If the focus is only on the correlation, or ratio, of radon and carbon dioxide, it is possible to take the instrument response

into account another way. Instead of deconvolving the radon observations, the response function of the radon detector can be20

applied to the carbon dioxide time series (Fig. 7c) also recovering a strong correlation between radon and carbon dioxide and

the same slope.

During a single night the slope of radon versus carbon dioxide is related to the flux ratios. Assuming that the net respiration

flux of carbon dioxide is constant during the night, and that radon and carbon dioxide have the same source distribution in

space, the fluxes, FCO2 and FRn, can be linked to the change in concentration since sunset, ∆CCO2 and ∆CRn, according to25

(e.g. Conen et al., 2002)

FRn

FCO2

=
∆CRn

∆CCO2

. (29)

As an extension, beyond correcting for the instrument response, it would also be useful to examine deviations from a linear

correlation between radon and carbon dioxide. These deviations, which are relatively small at this site, would be caused by

differences in the spatial variability of sources (van der Laan et al., 2014), or by temporal changes in carbon dioxide emissions.30

For this paper, though, it is pursued no further.

Two nights earlier, during a windy night, the respiration flux from eddy covariance measurements wasFCO2 = 1.18µmol m−2s−1.

Assuming that the respiration flux was similar on the calm night, when eddy covariance estimates are known to be inaccurate

(Aubinet, 2008; Mahrt, 2010), the radon flux was FRn = 19.2+0.8
−0.9 mBq m−2 s−1. This estimate is within the previously mea-
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sured regional emissions (Griffiths et al., 2010) of 18.1 mBq m−2 s−1 and 51.3 mBq m−2 s−1 and has an uncertainty derived

from the uncertainty in ∆CRn/∆CCO2 , ignoring the uncertainty in the eddy-covariance flux and systematic errors.

Having obtained an estimate of the radon flux, it is possible to estimate the depth of the planetary boundary layer based on

the radon time series and a boundary layer budget. During the morning transition, the boundary layer is likely to be well mixed

so that a simple box model (Griffiths et al., 2013) can be used to estimate its depth, on the assumption that the horizontal flow5

is non-divergent. Output from this box model is shown in Fig. 8 based on raw, 60 min lagged, and deconvolved time series. The

motor glider flew ascending profiles at 0725 and 0800 LT and profiles of temperature, humidity, and wind speed were used to

derive boundary layer heights. The aircraft-derived boundary layer height was computed from two methods: the parcel method

(Collaud Coen et al., 2014), which has similar underlying assumptions to the radon box model, and a bulk Richardson number

method (Holtslag and Boville, 1993).10

In Fig. 8, the profile flown at 0800 was capped by a strong temperature inversion, which draws the parcel and Richardson

number estimates closer than the earlier profile. As well as being easier to analyse, a strongly-capped boundary layer is close to

the situation assumed by the box model. As a result, the box-model-derived height agrees well with the aircraft measurements

at 0800, and is in between the two aircraft-derived estimates at 0725, provided that the deconvolved radon time series is used.

Using the detector output directly leads to an underestimate of mixing height. Alternatively, if the radon surface flux were a15

free parameter, surface emissions would be overestimated. In this case, using the scaled detector output yields a mixing height
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Figure 8. Box model analysis of deconvolved and scaled radon detector output. The mixing depth is calculated by assuming that radon is

mixed homogeneously in a near-surface layer, with surface emissions of FRn = 19.2 mBq m−2 s−1. The aircraft measurements of boundary-

layer depth are computed from vertical profiles of temperature, wind speed, and humidity using the parcel method (lower limit of each bar)

and bulk Richardson number methods (the upper limit of each bar). A critical Richardson number of 0.3 was assumed.

estimate which too low by a factor of four. If the detector output is lagged by a constant 60 min, the error is reduced, yet the

boundary layer height is still low by a factor of two and the timing of boundary layer growth is wrong.

In this case (Fig. 6) the raw and deconvolved time series are in agreement during the afternoon. It is important to know if

this is always the case, because the daytime radon concentration is of particular interest during model testing (e.g. Allen et al.,

1996). Daytime radon concentrations respond to the height of the convective boundary layer and airmass fetch (Chambers et al.,5

2011). Errors in daytime radon concentrations might therefore be related to problems with the modelled convective boundary

layer and not to factors which are important for night time radon concentrations.

To see how the detector response may influence model comparisons, the systematic influence of deconvolution on daytime

radon concentrations was examined for a two week period of radon measurements from a site near Richmond, New South

Wales (Chambers et al., 2015b). Figure 9 shows the composite diurnal cycle from a 1500 L detector during two weeks of clear10

weather conditions, when the radon diurnal amplitude was large, meaning that the influence of the detector response might

be relatively large. In this case, the detector recorded counts every six minutes and a lag correction of 72 minutes maximises

the correlation between raw and deconvolved time series. A 60 minute lag works almost as well, and would be a good choice

for data recorded at the usual 30 minute intervals. The constant-lag correction reduces the daytime high bias present in the

raw detector output, but changes the timing of the morning drop in radon concentration. Crucially, for comparison with model15

output, the afternoon high bias is still present (18% high both at 1500 and in the daily minimum). This is significantly higher

than the absolute uncertainty in the detector at steady-state (a 5% uncertainty, based on the uncertainty of the calibration

source).
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Figure 9. Composite diurnal cycle from the Richmond 1500 L detector during two weeks of consecutive stable nights and clear-sky days.

BMC deconvolution means the Bayesean Monte Carlo deconvolution method from Sect. 3.3. A lag correction of 72 minutes maximises the

correlation between the lagged detector output and the deconvolved output. See Chambers et al. (2015b) for site details.

In summary, the two case studies in this section illustrated that correcting for the instrument response can lead to relatively

large changes in the interpretation of radon time series. The first showed that raw radon time series are inconsistent with carbon

dioxide measurements, with grab samples, and with aircraft profiles of the boundary-layer. After deconvolution, however, the

time series is consistent with a uncomplicated understanding of boundary-layer mixing and carbon dioxide fluxes. The second

showed the effect of deconvolution on the radon diurnal composite. The effect is less dramatic than the previous example, but5

significant because it biases results. The amplitude of the diurnal cycle is attenuated in the raw radon time series causing a high

bias of ∼ 18% in the daily minimum. This high bias can be expected at other inland sites during periods of clear skies and low

winds.

6 Discussion

6.1 Time-resolution limits10

The time resolution of a two-filter radon detector is ultimately limited by two factors. First, there is the 3.1 min half-life of

polonium–218. Second, the number of counts expected during a counting interval decreases as temporal resolution increases.

With a radon concentration of 1 Bq m−3 and εnet = 0.2s−1
(
Bqm−3

)−1
, representative of daytime conditions inland, the

counting error is about 13% for a 5 min counting interval. These two considerations mean that, for routine measurements,

the shortest practical counting interval is ten minutes or more. Compared with the current practice of reporting hourly radon15
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concentrations, the possibility of increasing the reporting frequency by a factor of 2–4 is a minor improvement and does not,

in itself, make the effort of deconvolution worthwhile. The real advantage of deconvolution is that the deconvolved radon con-

centration is insensitive to earlier measurements. In the raw output, elevated counts persist for hours after radon concentrations

have dropped.

6.2 Operation5

The deconvolution technique performs best with a stable detector response-function. Section 2.4 showed that a detector being

operated outdoors has a small, but measurable, change in response which appears to be linked to low relative humidity, itself

caused by the hotter-than-ambient temperature inside the delay chamber. The detrimental effect of solar heating has been

observed elsewhere; Brunke et al. (2002) found that shading their detector led to more repeatable calibrations of detector

efficiency. For best performance, therefore, indoor installation should be favoured. Actively controlling the humidity inside10

the detector is also a possibility for future consideration. If the detector response were stabilised enough, it would simplify

the detector model and make deconvolution easier. The long-tail response of the detector is ultimately set by the lifetimes of

radon daughters but the initial rise-time is controlled by the external flow rate. Provided that thoron can be excluded from the

detector, a higher external flow rate should be favoured when aiming for sub-hourly resolution.

6.3 When should deconvolution be used?15

Three deconvolution methods were tested in this work, all of which are successful at redistributing the long response tail into

the correct part of the time series. Nevertheless, deconvolution is not always the right option.

Deconvolution introduces more variability into the time series. For the method used here, unrealistic fluctuations are sup-

pressed by a prior constraint, namely that the radon time series be smooth. Fluctuations from a smooth signal are only allowed

when there is enough evidence, from detector counts, to support them. When detector counts, N , are small measurement20

noise is large because noise scales with
√
N . At remote baseline sites, radon concentrations of 50 mBq m−3 are common (Za-

horowski et al., 2013), three orders of magnitude below the radon concentrations in Fig. 6. During these periods, the case for

deconvolution is weak.

Even in cases where deconvolution is possible, it might not be necessary. When the high frequency fluctuations are not of

intrinsic interest, there are two alternatives. First, a constant lag can be assumed, as has been standard practice previously.25

Second, in cases where radon measurements are compared with another tracer, the detector response can be applied to the

other time series.

The constant-lag approach has the advantage of simplicity and can be useful in many studies. The choice of lag might be

based on some characteristic of the instrument response, or chosen to maximise the correlation with other tracers (e.g. Griffiths

et al., 2014). With a constant-lag approach, the correlation between radon and other tracers, although weakened, is still present.30

There are also biases which affect the diurnal cycle, but at least these can be anticipated.

Applying the detector response to other tracers is also simpler than deconvolution. It requires the detector response to be

well understood, but the complexities of Markov-Chain Monte Carlo sampling can be avoided. For the case study discussed
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here, applying the detector response to carbon dioxide measurements is a feasible option. As this is, in effect, smoothing the

carbon dioxide measurements, this approach would reduce the statistical uncertainty without changing the flux ratio.

A forward modelling approach could also be attractive for model–data intercomparison, but would require care during

interpretation. Problems could arise under certain conditions, such as trying to compare daytime model and measured radon

concentrations. Section 5, showed that the daytime radon measurements retain a memory of the night time peak, with the5

implication that a diagnosed daytime bias might be caused by errors in night-time mixing.

In spite of the possibility of forward-modelling, deconvolution remains preferable in many cases, especially when radon

concentrations are used quantitatively. Examples are: when comparing with grab samples or with widely spaced model output.

In particular, deconvolution is the best option when radon measurements are used to infer mixing properties.

7 Conclusions10

The raw signal from a two-filter radon detector responds slowly to abrupt changes in radon concentration. The signal, as

a result, depends on the history of radon concentration of several hours prior. Correcting for the instrument response, and

deconvolving the radon time series is difficult because of small day-to-day changes in the instrument response. Nevertheless,

this paper shows that it is possible to reconstruct the ambient radon time series using a Bayesian deconvolution method based

on a Markov Chain Monte Carlo sampler and a validated model of the detector response.15

For archived measurements, the radon time series was reconstructed at 30 min resolution, the resolution of the raw data, in-

stead of being down-sampled to hourly resolution. For large radon signals, such as from a calibration source, 10 min resolution

was achievable and could potentially be applied to field measurements inland, where the radon concentration is high.

More significantly, biases were removed from the time series, and reconstructed variations in nocturnal radon concentrations

were realistic. In a case study, the deconvolved time series was consistent with carbon dioxide measurements (from an instru-20

ment with a fast time response); grab samples; and a simple mixing height model when the raw output was not. In another

example, during a period with a large amplitude diurnal cycle, the mean daily minimum radon concentration was too high by

18%, if the instrument response was neglected.

In terms of physical properties radon is an almost ideal natural tracer, which makes it important to account for the non-

ideal characteristics of detectors. Correcting for the instrument response, based on the representative cases shown here, makes25

inference from radon observations easier and more certain.
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